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Abstract. We study fluctuation effects in a two-species reaction—diffusion system, with three
competing reactiond + A — ¢, B+ B — ¢ andA + B — . Asymptotic density decay rates

are calculated foe/ < 2 using two separate methods—the Smoluchowski approximation and
also field-theoretic—renormalization groups| techniques. Both approaches predict power-law
decays, with exponents which depend asymptotically only on the ratio of diffusion constants, and
not on the reaction rates. Furthermore, we find thatdfer 2, the Smoluchowski approximation

and therc improved tree level give identical exponents. However, whereas the Smoluchowski
approach cannot easily be improved, we show thatrtbgrovides a systematic method for
incorporating additional fluctuation effects. We demonstrate this advantage by evaluating one-
loop corrections for the exponentsdn< 2 and find good agreement with simulations and exact
results.

1. Introduction

Over the past decade there has been enormous interest in reaction—diffusion systems (see
[1-12] and references therein), with particular emphasis on the effects of fluctuations in low
spatial dimensions. Most attention has been paid to reactions of theAert — ¢ and

A+ B — @ with a variety of different initial/boundary conditions. At or below an upper
critical dimensiond,, these systems exhibit fluctuation-induced anomalous kinetics, and
the straightforward application of traditional approaches, such as mean-field rate equations,
breaks down. Attempts to understand the role played by fluctuationd fgr d. have
involved several techniques, including Smoluchowski-type approximations [9] and field-
theoretic methods [8, 10, 11]. In this paper we set out to study these fluctuation effects in a
system with three competing irreversible reactions:

A+A—>0 B+B— 0 A+ B — .

At r = 0 theA andB particles are distributed randomly (according to a Poisson distribution),
such that on large scales both densities are initially homogeneous. Our goal is to calculate
density decay exponents and amplitudes, taking into account fluctuation effects. In pursuit
of this aim, we analyse the system using both the Smoluchowski approximation and the
field-theory approach, and we show that the two methods are closely related. However,
whereas it is unclear how the Smoluchowski approach may be improved, the field theory
provides a systematic way to obtain successively more accurate values for the asymptotic
density decay exponents and amplitudes. We shall concentrate on situations where one of
the two species is greatly in the majority (as is almost always the case asymptotically)—so,
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for example, if specied is predominant, then we can safely neglect the rea@ieiB — .
This kind of assumption will lead to a considerable simplification in our analysis.

Previous work on this problem includes use of the Smoluchowski approximation [9], as
well as exactiD results obtained by Derridet al [15-17] for the special case ahmobile
minority particles. Derridaet al were, in fact, studying a different problem, namely the
probability that a given spin has never flipped in the zero-temperature Glauber dynamics
of the g-state Potts model in one dimension. By solving this model exactly [16, 17] they
showed that this probability decreased as a power law‘® for the Ising ¢ = 2) case.
However, in one dimension, the Ising spin-flip problem and the decay rate for the immobile
impurity in our reaction—diffusion system are exactly equivalent problems, and hence this
exact decay rate also holds in our case. We also mention one other previous result for
the immobile impurity problem, due to Cardy [18]. Using renormalization-group methods
similar to those employed in this paper, it was shown that the density of the minority species
away decays as a universal power law? for d < 2, whereg = %—i—O(e) ande =2—d.

The case where thmajority species is immobile has also been solved (see [19]). In
this case the decay rate for the minority species is dominated by minority impurity particles
existing in regions where there happen to be very few of the majority particles. Since
these majority particles are strictly stationary, this situation is not describable using a rate
equation approach, and it turns out that the minority species decays away(as®¥p?),

a result which is not accessible by perturbative methods.

In this paper, using a field-theory formalism and techniques from the renormalization
group, we will obtain decay rates and amplitudes for the general case of arbitrary
diffusivities—a regime previously only accessible using the Smoluchowski approximation.
Our basic plan is to map the microscopic dynamics, as described by a master equation, onto
a field theory. This theory is then renormalized (ibr< 2), and the couplings (reaction
rates) are shown to have(€ fixed points, whose values depend only on the ratio of the
species’ diffusion constants. Note that this system (with irreversible reactions) is particularly
simple in that only the couplings (and not the diffusivities) are renormalized. The next step
is to group together Feynman diagrams which are of the same order in the renormalized
couplings, i.e. diagrams with the same number of loops. These diagrams are then evaluated
and a Callan—-Symanzik equation used to obtain improved asymptogixpansions for
the densities. In this fashion, quantities of interest may be calculated systematically by
successively including higher-order sets of diagrams (with more loops) in the perturbative
sum.

One consequence of the theory is that the asymptotic decay rates and amplitudes for
d < d. will be independent of the reaction rates—a result which is in accordance with the
Smoluchowski approach. In fact, all physical quantities below the upper critical dimension
depend asymptotically only on the diffusivities and the initial densities, and in this sense
they display universality.

We now present a summary of our results for the density decay rates. In what follows
we definen 4, np to be the initial density ofd, B patrticles, andd = (Dg/D4) < 1 to be
the ratio of the diffusion constants. Far< dc = 2, n4 > ng andn,; ‘D' <1 < 11
(wherer; is a crossover time derived in section 4), we have (as in [8]):

(@) 1 n 2In8r —5
Y\ are 167
For the minority species, we find, from thres improved tree-level approximation in the
field theory:

(b) ~ F(Dyt)™*? 2

+ o<e>)<DAr>—d/2. (1)
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where

P d(s+1\"? . T'(e/2) ((6+1)/2)1/2 -
~ ~ngl —o—s .
2\ 2 B n(8m)d/2

These decay exponents are identical to the Smoluchowski results. Performing & strict
expansion on thiRG improved tree-level result gives an expongnt % + O(e) for the
immobile impurity case§ = 0). This is in agreement with previowrss calculations by
Cardy [18]. If we now go beyond the tree-level calculation by including one-loop diagrams,
then we obtain an improved value for the expongnising ane expansion:

(1438 €3 148\ 8(1+9) 1438
p= (50 (53 em(5) - [rean(PS)]

1, 2 n? 2
—Z(S —1)<1+(1+5) |:f{1+8} —6:|>i|>+o(6) 4)
where
Y Inu
f{x}:—/l S ®)

is the dilogarithmic function [20]. This exponent is found to be in good agreement with
simulations [9] and exact results [16] ih= 1.

However, fors < 1, the system crosses over to a second regime wierne- (a). This
situation is similar to the case where we begin with > n4. In that regime, at times

Dyt > ny??, and forng > ny, 8 # 0 andd < 2, we have

N 1 2In8r —5 a2
(b) (47[6 + 160 + 0(6)) (Dpt) (6)

for the majority species. Using thws improved tree-level result for the minority species,
we obtain
{a) ~ E(Dpt)™ )

with

d<1+51)"/2 ( (e/2) )“““”W
o — E =~ ny .

2 2 ng(8mw)d/2 ®)

The exponent is again in agreement with the Smoluchowski result. If we attempt to improve
this calculation to one-loop accuracy, then we obtain

1+t €e[3 14671 §7Y14+67Y 14671
a_<2 )(1_2[2+m( ; )_ . [mm( . )}

1 ., 1 2 2 2
—Z((S —1)<1+(1+5 )|:f{1+6—1}_6])}>+0(€)' 9)

This exponent is only valid fo8 quite close to unity, and even in this region it may be less
accurate than the (nonexpandedRG improved tree-level result given above. This point
will be discussed further in section 4.2.

We next give results valid faf = 2, where we find extra logarithmic factors multiplying
the power-law decay rates. Treating first the cages> (b) andé < 1, we have, from the
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RG improved tree level, an initial regime with

(@) Int
a 8t Dyt

((1+8)/2)
w=o( (")) -

However, for§ < 1, the system again crosses over to a second regime Whiere (a). In
this second regime the density decay exponents (though not the amplitudes) are the same
as for the case where we begin with > n,. In that case we have, fér# 0:

(10)

Int
87 Dpt

((1+87H/2)
w=o((")") 0

Crossover times for these cases are given in section 4.3.

We now give a brief description of the layout of this paper. In the next section we analyse
the system using the mean-field—-Smoluchowski approach. We then set up the necessary
formalism for our field theory in section 3, and use it to perturbatively calculate values for
the density exponents and amplitudes in section 4. Finally, we give some conclusions and
prospects for future work in section 5.

(b) (12)

2. The mean-field and Smoluchowski approach

The simplest description of a reaction—diffusion process is provided by the mean-field rate
equations. For the system we are considering with densit&sd b, they take the form

da

E = —2)LAAa2 - )\.ABClb (14)
db
4= —2hggb?® — Aagab (15)

wherei 4, App anda 4 p are the reaction rates and where we impose initial conditions of the
formal,—o = n4 andb|,—o = np. In this approach we have completely neglected the effects
of fluctuations—in other words we have made assumptions of the febnoc (a)(b) etc,
where the angular brackets denote averages over the noise. Below the critical dimension,
where fluctuations become relevant, this sort of approximation will break down.
Nevertheless, even at the mean-field level, the complete solution set for these rate
equations is quite complicated. In what follows we shall restrict our analysis to the case
where 235 < Aap < 2ha4. The solution for this particular parameter set will be required
for our later field-theoretic analysis. Following [9], it is easy to show (by forming a rate
equation for the concentration ratio) th@t/b) — 0 ast — oo. Thus if we begin with
initial conditions wheren, > np, we can identify two distinct regimes—an early-time
regime wherez > b and, after a crossover, a late-time (true asymptotic) regime where
b > a. Treating the early-time regime first, we find (after some algebra):

a~ (2naat)t (16)

np
b~ (ZnA)\'AA[))LAB/ZAAA ’ (17)
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Note that theA particles are decaying away more quickly than #is, so eventually we
crossover to a second regime:

b~ (2nppt)* (18)
na Oap — 2an) na\ o Ty

~ 1 — . 19

“ (2ngAppt)*s/? es ( (2hgp — XaB) nB) (19)

Alternatively, if we begin withng > n,4, then we have a single asymptotic regime:
b~ (2hppt) "t (20)
na
~ (an)\BBt))»AB/ZABB : (21)
However, if we now wish to extend our results at or below the upper critical dimension,
we must attempt to include some of the fluctuation effects. The simplest way in which this
can be done is to employ the Smoluchowski approximation [13, 14, 9]. The essential idea of
this approach is to relate the effective reaction raﬁ,%? to the diffusion constant®,, Dgp.
Suppose we want to calculate the reaction vef§. We begin by choosing a (fixed)
species target ‘trap’, which is surrounded Byparticles. When aB particle approaches
within a distanceR of the target, a reaction is deemed to have occurred. Consequently,
the reaction rate may be obtained by solving a diffusion equation with boundary conditions
of fixed density asr — oo, and absorption at = R. The flux of B particles across the
d-dimensional sphere of radiug is then proportional to an effective microscopic reaction
rate. If we now generalize to the case where bothAtend B species are mobile, then we
find (in dimensiornd < 2 and in the large-time limit):

28 ~ constantx (D4 + Dp)?/%r4/%71, (22)
For d = 2 we obtain logarithmic corrections:
off constantx (D4 + Dgp)
AP IN((D4 + Dp)1)
The Smoluchowski reaction rates faf, and A%, are obtained in a similar fashion. Note
that aboved = 2 the reaction rate approaches a limiting (constant) value, and we see that
the Smoluchowski approach predicts a critical dimensiod.cE 2 for this system. This is
simply related to the re-entrancy property of random walkg id 2. It is the inclusion of
this effect which accounts for the improvement introduced by the Smoluchowski approach.
If we now substitute these modified reaction rates into the rate equations, we can obtain

the Smoluchowski improved density exponents. For the case where np, we find an
initial regime with

a = 0@"%? (24)
b= o(;—ﬂl?)“). (25)

Once again, since tha particles are decaying away faster than Bis, we cross over to
a second regime, where (for94 < 1)

b= 0@1"9? (26)
d ((106-1\472
a=o<z‘2( =) ) (27)

This second set of exponents is the same as for the case where we beginp with 4 and
8 # 0. In this situation no crossover occurs and the exponents are valid for all asymptotic

a

(23)
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times. These exponents can be compared favourably with both simulations [9], and exact
results [17]. For example, the decay rate for an immobile minority impurity is given by
Smoluchowski to bex =935 This compares well with the exact decay rater g37°,

Turning to the casd = d. = 2 andn4 > ng, we obtain, for the initial regime:

‘= o('”j) (28)

Inz\ (@972
We again eventually crossover to a second regime, where (fo6 6< 1):
Int
b= O<t> (30)
Inz\(@+6/2 ) )
a= O((t> (In t)((lJrS* )/2) In((148~ )/2)). (31)

This second set of exponents is again valid (for all asymptotic times) in the case where we
begin withng > n, andé # 0.

Note that the Smoluchowski approach can also be employed ford;, where again
we will find (time-independent) reaction rates which depend on the diffusion constants.
However, our later field-theoretic analysis shows that there is no strict justification for this
procedure. Nevertheless, a recent Smoluchowski-based study has been made of a system
with heterogeneous single-species annihilation [9]. In this situation we have only one
fundamental reaction process, but different reaction rates may still arise, for example, by
having two or more different particle masses (and hence two or more different diffusion
constants). In this case it is physically reasonable to suppose that the exponehts #igr
(which are ratios of reaction rates) may again depend only on the diffusivity ratios, with any
other parameters cancelling out. However, in the general case, where the reaction processes
are genuinely distinct this will not be the case.

Overall, we have seen that the Smoluchowski approach is a simple way to incorporate
some fluctuation effects into the rate equation approach. Unfortunately, it is not at all clear
how these methods may be systematically improved. It is for this reason that we turn to the
main purpose of this paper—the development of an alternative field-theoretic framework.

3. The field theory approach

Fluctuation effects in reaction—diffusion systems have previously been successfully tackled
using techniques borrowed from field theory and also from the renormalization group.
Examples include studies of the diffusion-limited reactiagns A — ¢ [8] andA+ B — ¢

[10,11]. The first step in this analysis is to write down a master equation, which exactly
describes the microscopic time evolution of the system. Using methods developed by
Doi [21] and Peliti [22], this can be mapped onto a Schinger-like equation, with the
introduction of a second quantized Hamiltonian, and then onto a field theory, with an action
S. These steps have been described in detail elsewhere [21,22, 8, 10, 11], and consequently
we shall simply give the resulting action appropriate for our theory:

S = / ddx</ dt [a(d; — V®)a + b3, — V)b + 2xx4aa? + Apaa’a® + 2k bb?
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+)\,3352b2 + )\Agéab + AABl;ab + )\ABC_ll;ab] — él’lA — Bn[g) (32)

Here we have definedl = (Dg/D,) < 1 and also introduced the response figidand b.
In addition timet, together with the reaction rates;;; have been rescaled to absorb the
diffusion constantD,. Averaged quantities are then calculated according to

(X)) = N_lfDa DaDbDb X (t)e™S (33)
where

N = / Da Da Db Dbe™. (34)
Notice that in the path integral

/ Da Da Db Dbe™S (35)

integration over the field&, « and b, b, whilst neglecting the quartic terms, leads to a
recovery of the mean-field rate equations.

Performing power counting on the actidgh we can now give the natural canonical
dimensions for the various parameters appearing in the action:

[1~k2  [a],[B], [nal, ns] ~ k' [al [B] ~ K [rupl ~ K2 (36)
Notice that the reaction rates become dimensionlegs=in2, which we therefore postulate
as the upper critical dimension for the system, in agreement with the Smoluchowski

prediction.
From the actionS, we can see that the propagators for the theory are given by

Gkt — 1) = g K= fort > 1 @37)
aan “]o forr <t
—k2(t—1)8 ’
€ fort >t
Gk, t —1) = g (38)
0 forr <t'.

Diagrammatically, we represeq,; by a thin full line andG,; by a thin dotted line. The
vertices for the theory are given in figure 1.

3.1. Renormalization

One of the most important features of this theory, as mentioned in the introduction, is the
relative simplicity of its renormalization. Examination of the vertices given in figure 1
reveals that it is not possible to draw diagrams which dress the propagators. Hence the bare
propagators are the full propagators for the theory. Consequently, the only renormalization
needed involves the reaction rates;;, and in particular the diffusion constants @rare
not renormalized.

The temporally extended vertex functions for the reaction rates are given by the
diagrammatic sums given in figure 2. As is the case in similar theories [8, 10, 11], these
sums may be evaluated exactly, using Laplace transforms:

Aaa
hanlk,s) = 39
M) = A CT (/25 + 1k2) 2 (39)

ABB
rpsk, $) = 40
) s CT (/28 L5 /3 + T P2 (40)




3444 M Howard

~Ayp —Map _x’AB
—27\’AA A aa ~2h gy A g
n,8(t) ng (1)

Figure 1. Vertices for the field theory.

@ ... . . N L Y
+ .,
Figure 2. The temporally extended vertex functions) (A44 (k,s), (b) Agp(k,s), and €)
)\AB(ks S).
AAB
Aap(k,s) = (41)

1+ X427 ¢/2CT (€/2)(1 4 8)~4/2(s + k28 /(1 + 8))~¢/2
whereC = 2/(87)%/? ands is the Laplace-transformed time variable.
We can now use these vertex functions to define the three dimensionless renormalized
and bare couplings, with = «2, k = 0 as the normalization point:
&Ry = Kk Aijy(k, $)|s=c2 k=0 8o, = K “Aij)- (42)
Consequently, we can define thrgdunctions:

d

B(8R.) = K5 _8Ryy = —€8ry +€CT(€/D8E,, (43)
d _

ﬁ(gRBB) = KagRBB = _EgRBB + ECF(6/2)8 d/2g12?33 (44)
0

B8ray) =Ko —8Ray = —€8Ryy + 27%eCT (e/2) 1+ 8) %2 (45)

and three fixed pointg(g;w) =0
gr,, = (CT(e/2)7" (46)
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g, = (CT'(e/2)574/%)71 (47)
1/1+68\ A\
G = (cremy(F50) ) (48)

Finally, we see from (39)—(41) that the expansiorggf, in powers ofgg,, is given by

2
8R,

*".f)+'_" (49)
8R,

ij}

8oy = 8ryy t

3.2. Callan—Symanzik equation

We now exploit the fact that physical quantities calculated using the field theory must be
independent of the choice of normalization point. This leads us to a Callan—Symanzik
equation:

0 d 0 0
[K + B@GRu) 7 T B@GRsp) 7 + 'B(gRAB):| (a)g =0. (50)
K 0gr 08Ryp O8R5

AA

However, dimensional analysis implies

0 0 0 0
kK ——2t—+dny_— +dng_— —d|(a)r(t,na,np, gr, 8, k) =0. (51)
0Kk ot ony ong !

Exactly similar equations hold fap) . Eliminating the terms involving and solving by
the method of characteristics, we find

(@Rt na, 0B, 8ry» 8. k) = (K202 a)r (k2 fia (k™) iip(k™2), GRyy (K2, 8,6)  (52)

with the characteristic equations:

8f1A 8ﬁ3 8gR(,-‘/-)

2t—— = —dn 2t—— = —dn 2t = B(8r, . 53
81‘ na 81‘ np at IB(gR(,,)) ( )
and initial conditions

na(t) =ny ng(t) =ng (54)

8Rua () = &Rus ERus(t) = &Ry ERus (1) = &Ry (55)
These equations have the exact solutions:

/ dj2 / dj2

iia(t') = <t/> ng ng(t') = <t’) np (56)

and
* -1
. 8Ry;y — 8Ruj
(=g (14 70— 57
o () ng( " sn (z/t'>€/2> o)

In the larget limit gz, — g;m, a relationship which will allow us to relate an expansion
in powers of the renormalized couplingg,, to ane expansion using (52). In our later
density calculations we will assume that this asymptotic regime has been reached.
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3.3. Tree diagrams

In order to perform systematie expansion calculations we now need to identify the
leading and subleading terms in an expansion in powerggf In calculating(a) and

(b), contributions from tree diagrams are of or@%(rmn{l;", for integerg, and densities

niy = {na, ng}. However, diagrams with loops will be of ordergg;;’nﬁ". The addition
of loops makes the powep,, higher relative to the power of the densities—so we conclude
that the number of loops gives the order of the diagram.

The lowest-order diagrams contributing &) and (b) are the tree diagrams shown in
figure 3. We represent the classical (tree-level) dersity by a wavy full line, andb)¢ by
a wavy dotted line. These sets of diagrams are equivalent to the mean-field rate equations,
as may be seen by acting on each by their respective inverse Green functions.

<a>

cl

VD T e

<b>
cl

. ~Z Pid

» s -
-~ ~ -~ . e ~ s -
TN NS 2 e 4 mmm—— < § e p mme—— < 4 mmm—

'~ A Y AN RN \
~ ~ ~
~ ~ ~

Figure 3. Tree-level diagrams for the densitiés) and (b).

The second tree-level quantities appearing in the theory are the response functions:

L(k, tz, t1) = (a(—k, t)a(k, t1)) (58)
Mk, t2, 1) = (b(—k, t2)a(k, 1)) (59)
N(k, t2, 1) = (b(—k, t2)b(k, 11)) (60)
Pk, 12, 1) = {a(—k, t2)b(k, 11)) (61)

which we represent diagrammatically by the thick lines shown in figure 4. These functions
can be evaluated analytically, but only in the limit) > (b), or (b) > (a). The details of

this calculation are presented in appendix A, where the following results are derived (for
(a) > (b)):

2
14+ 2hq4naty 2
Lk, to,t1) = ——7=) exp(—k“(to — ¢ 62
(k, 12, 1) (1+2kAAnAt2 p(—k=(t2 — 1)) (62)
14 2haanats Aap/2haa 5
Nk, to,ty) = | —————— exp(—k“(t; — 11)8 63
(k, 12, t1) (1+2)»AAHAI2> p(—k“(t2 — 11)8) (63)

(L+ 20 panpg)has/2s

Pk, to,t1) = —Aypn
(k, 12, 11) ABNA (Lt Doarniaty)?
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L= | |

2~
I

10000

M= 0000C—1

N= (JOoooooo

where, for example :

Figure 4. The response functions.

exp(k?(1— 8)t)

17}
exp(—k2(t; — 118 dr’ 64
X exXp(—k“(tz — 11 ))/;1 (L + 2k anat’)-Trman/Zoas (64)
(l + ZA.AAnAfl)Z
Mk, tz,11) = —X
( 2 1) ABlB (1+ ZAAAnAIZ))»AB/Z)\AA

2 exp(—k2(1 — 8)t')
x exp(—k2(t8 — t / dr’. 65
Pkd =) |5 (63)

An extra check on validity of these response functions is provided by the relations

L(0,1,0) = agan(i» N(,1,0) = 8;”’1(;” (66)
P(0.1.0) = 3;"”(;)) M(.1.0) = 8?;;” 67)

which follow from the definition of the response functions and from the initial condition
terms in the actior$. It is easy to check that the above response functions do indeed satisfy
these relations.

For the opposite situation wheres > n, (and hence(b) > (a)), we could use a
formalism similar to the above for the density calculations. However, it is much simpler to
map this case onto th@) > (b) regime by swapping the labels on theand B particles,
and then relabelling:

np <> Np )\,AA(—>)LBB DA(—>DB.

We can then obtain the exponents and amplitudes for this second regime with no extra work.
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This concludes our discussion of the field-theory formalism. The framework we
have built up allows (in principle) the systematic calculation of fluctuation effects in all
circumstances. However, it is only in the case where one of the species is greatly in
the majority where the equations (for the tree-level densities and response functions) are
sufficiently simple for analytic progress to be made. We now turn to use of the field theory
in calculating the fluctuation modified densities.

4. Density calculations

4.1. Tree level

The first step in using our field theory to include fluctuation effects is to insert the mean-
field (tree-level) solution into the Callan—Symanzik solution (52), using the results for
the running densities/couplings (56), (57). Since the fixed points for the couplings obey
28kys < 8k, < 28k,, (Whens < 1) itis appropriate to use the mean-field solutions derived
in section 2. For the case whetg > np, this gives

I'(e/2) _
{a) ~ <(871)d/2)(DAt) a2 (68)
and
(b) ~ F(Dst)™" (69)
with
d(1+6\" e F(e/2) \ @27 20
P35\ TIB\ (82 (70)
valid for n,“ D;* « t « 11, where
n @/d)(1+8)/2)2~ 1)
Dan = (W> (71)

These modified crossover times are obtained by using the expressions for the running
couplings/densities in the mean-field crossovers. Notice that the density decay exponents
derived here are the same as those obtained from the Smoluchowski approach. However,
as we are performing aa expansion, we are only strictly justified in retaining leading-
ordere terms. Consequently, we find, for the minority species density decay exponent and

amplitude:
,3=(1;8)+O(€) F=n3(

)((1+6)/2)+0(e)

+ 0(€%) (72)

Areny

Eventually, however, as thé particles are decaying away more quickly than ghparticles
(due to their greater diffusivity whed < 1), we crossover to a second regime where
(b) > (a). For 0< § < 1, we have

I'(e/2
(b) ~ <(8§f)/d/)2><03t>d/2 (73)
(a) ~ E(Dp1) (74)
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with
d{1+s\"? /1460
 — = 7
« 2( A ) ( ; )+o<e> (75)
(14871 /2)4/2 ((1+571/240(e)
I'(e/2) 0
E~ | ————— = 2 (@] 76
naf( )<n3(871)d/2> naf( )<4716n3 + O(e”) (76)
where
_ d/2_gd/2
(1 [((1+ 3)/2)(1/2 _ l]nA —1-((1+6 1)/2)[1/2(%!72%) 77
T =\ (572 — (11 8)/2)2n, ' (77
This result is valid forr > 15, where
D1+ 512 (2/d)((A+671) /242 -1)~
Dyty ~ naf( )(:r d/z) . (78)
nglw )/2)

Note that fors§ = 1 the first crossover timg — oo—in this case the two species decay
away at the same rate, and so no further crossover occurs. Alternativiely @, then the
first regime is left, but the second crossover time> oco. In that case the minority species
finally decays away in the exponential fashion predicted in [19]. For the intermediate case
where$ is small, but non-zero, the decay exponent for the minority species becomes large
in the final regime. The explanation for this result lies in the relatively large diffusivity
of the minority A species (ifD4 is large) and/or the increased density amplitude for the
majority B particles (if Dg is small). Both these effects will lead to an increased rate of
decay for theA species.

Finally, if the initial conditions are changed such that neyw>> n,, with § #£ 0, then
we obtain the same results as for the second of the above regimés;fas n;”/*, with
f~1.

Figure 5. One-loop diagram fota) (when(a) > (b)).

4.2. One-loop results

We now describe the one-loop improvements to the tree-level result. In the regime
{(a) > (b), the dominant diagrams will be those where the minimum possible number
of (b)¢ insertions are made. For the majorityspecies the appropriate diagram is shown

in figure 5, where there are né) insertions. This is identical to the one-loop diagram for
A+ A — ¢ evaluated in [8], which gives, in conjunction with the subleading terms from
the tree level,

1 2In8r —5
(a) ~ (

T —d/2
o 2ns +o<e>)<DAr> . (79)
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Figure 6. One-loop diagrams fotb) (when (a) > (b)).

In addition, for the subset of diagrams with tfig) insertions, the decay exponent is exact.
More details of this calculation, including a demonstration of the cancellation of divergences,
can be found in [8].

Turning now to the one-loop calculation for the minority species, the appropriate
diagrams are the three shown in figure 6, each of which contains justbdpeénsertion:

() —4hapAianine d’k / dt2/ dry (1 — (1+ 2hpanatr)?
(2hpanpt)Hras/Zan | (2)d (1 (L+ 2haanatz)®
X exp|— fp—11
[—2k%( )] (80)

. —ZKiBAAAn%nB dk , A+ ZA,AAnAtl)Z
(i) > dt2 dtl d VB TR
(2 aanat)ras/Zas | (2m)d " (1 + 2hqanat2)

xaiixaa;?eﬂﬂk%mﬂ+ﬂ) 2t1 + (1 —8)t)] (81)
(i) )LiBnAnB / d“k / dzf dry - T Aaanah) (L4 20 p4n411)
(2hpanat)ras/an | (2m)d (1+ 2044 412)2

x expl=k?(1 + 8)(t2 — 11)]. (82)

The detail of the evaluation of these diagrams is rather subtle. Essentially we are
interested in extracting the most divergent parts of these integrals, which will turn out to
be pieces of @ 1) and Qe®). However, we must be careful not to confuse genuine bare
divergences (of @~1) which must be removed by the renormalization of the theory), with
logarithmic pieces, which we must retain. The divergences arise in diagrams (i) and (iii) as
the difference in time, — ¢, between the beginning and end of the loops, tends to zero (in
d = 2). After the process of renormalization we find corrections of the form

1 + (constane In((constantz?/?) + O(e?). (83)

If this series is identified as the expansion of an exponential, then we find that our one-loop
diagrams (together with subleading components from the tree level) have provided O
corrections to the exponents.

Diagrams (i) and (iii) are relatively straightforward to evaluate. khendr; integrals
are elementary, and the finalintegrals can be done by parts to extract the necessary most
divergent pieces (up to @°)). The second diagram of figure 6 is more complicated, and we
perform its evaluation in appendix B—although we are only able to extract the logarithmic
piece of Qr *48/2%41</2|ny).  There will be corrections to this of @ 748/2a4 ¢/2)
(contributing to a modified amplitude) which we have been unable to calculate. We find
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asymptotically:

O Gxz iy (ZIE/Z(In(ZAQAnAt) “Y 200 @ pnan) — D In@m)
15" - gtf/z IN(2A g4 4t) — /o g, brer? IN(1+ 2Ag4n4t0) dts + O(e))
(84)
(ii) My (5 + }(32 l)[ln(l 5)
320 hoan (20 panat) 45/ mn 115
_ / (11_5)/(”8) dv at 2 01+ v)] n 0(6))f/2 IN(2A s anat) (85)

(iii) + 12 In(2A g an at) IN(A (1 + 8))

)\.iBnB(47T(1 + 8))_1 (21‘6/2 |n(2AAAnAt)

2han(2hpan at)an/Zean €

—t2(IN(@A g anat) — 1) — / 1y 2N 4 24 g anato) dip + O(e)) (86)
0

To one-loop accuracy we can make the replacementj = «“go,, — «“gr,- These
results must now be combined with the subleading terms from the tree level. Using
equation (49), we find

np np
(2h gam 4t)han/2han - (ZKGgRAAnAt)gRAB/ZgRAA

(D) ~

*

2
x<1— gR*AB __ SRu IN(2cgg,,nat)
2gRAA 2gRAAgRAB

8Rus
2g%

Raa

+

IN(2«€gg,, nat) + O(gi)). (87)

If we now insert explicite-expanded values for the fixed p0|@t§ then we discover that

the bare divergences cancel between (84), (86) and (87). W|th insertion into the Callan—
Symanzik solution (52), we also find that the pieces we have left as integrals in (i) and (iii)
(which are Qr¢/%(Int)?)) also mutually cancel. Eventually we find

B 1+596) 5 8%2-1 1-6
b) ~ constantx ¢~(@/2(1+8)/22( ¢ €( 1-21+ 8- In
(b) + 8 146 4+ 8 113

dv

(1-8)/(1+6) 1 2
—/ d+ U) In(1+ v)))] In(constantx t4/%) + O(ez)> (88)

-1

where we have neglected© pieces which, aside from the prefactor, are timgependent
These terms contribute only to the density amplitude. We now evaluate the integral in (88),

using

U

/(1—5)/(14—8) |n(1_|_ U) q /2/(1+5) Inu
T dv=
— 0 u—1

1 n 2/(14+8) |n
=/ ! du+f “ du
0 u—1 1 u—1

—”z—f{ 2 } (89)

1 v

146
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where f{x} is the dilogarithm function [20]. The other parts of the integral are elementary.
The next step is te expand therG improved tree-level result:

Z(l;5>wiz<1;5>(1—;<1+m<1;5>>+0@%>. (90)

Then, exponentiating the expansion in (88), we findb) = O(t~#), where

1+56 €[3 1+56 5(1+9) 1+6
p= (50 (-5 3 em(5) - [rean(PS)]

1., 2 n? )
—Z(a — 1)<1+(1+5) [f{1+8} - GDD + O(e9). (91)

B is plotted as a function of for e = 1 (d = 1) in figure 9. For the case whefe= 1,

we recover the decay rate) = O(r~¢/?). This is to be expected, as whén= 1 we are
effectively again dealing with a single-species reaction—diffusion system (at leastf@).

In that case the density decay exponent is known to all orders in perturbation theory [8], and
is in agreement with our result. For the case wheee 0 andd = 1, the decay exponent

is also known exactly to béb) = O(+~%37% [17]. This can be compared with our result,
where we find

B l+lm2+n2
5_16 4 64

Consequently, this answer is a modest improvement over the Smoluchowski result derived
in section 2, and also in [9].

~039 (5=0). (92)

<>OEDC¥§”
ooood I
OD Q <7 "2"’

Figure 7. One-loop diagram fotb) (when (b) > (a)).

JREIS NS oo
(ﬂ 0
(iii)
Ul
——ood )
SanYh,

Figure 8. One-loop diagrams fofa) (when (b) > (a)).

For the caseip > n, (and hence(b) > (a)), we could follow the same route as
described above, by evaluating the one-loop diagrams shown in figures 7 and 8. However,
as we mentioned in the last section we can much more easily obtain these corrections by
swapping the labels on th&é and B particles, and then relabelling:

Ny <> np Aaa < Agp Dy < Dgp.
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0.5 ¢

ﬂ 0.48 |

§

Figure 9. The one-loop density decay exponghfor the minority B species (b) = O(r#))
as a function ob.

Following this procedure, the majority species amplitude/exponent can be found by taking
D, — Dg in equation (79):

(b)~< 1 2In8r —5

= —d/2
it e —l—O(e))(DBt) . (93)

We can obtain the one-loop minority species exponent by substitdting §=* in
equation (91):

(a) = O(t™) (94)

€3 14671 s +687Y 14671
1_2[2+m( ; )_ . [1+2|n( . )}

-2 -1 2 w? 2
€ —l)<1~|—(1~|—5 )|:f{1+8_1}—6:|)1|>+0(€ ). (95)

Notice, however, that in forming the one-loop corrections for the minority species exponent,
we have had to expand thes improved tree-level result:

(L)) o)

The error arising from this expansion will become largeddsecomes small. Eventually

this inaccuracy will cause the exponent to reach a maximum and dbereaseas § is
further reduced—behaviour which is clearly unphysical. In order to reduce the error, and
to ensure that the expansion in equation (96) is qualitatively correct, we need to retain the
O(e?) terms. Hence the one-loop exponent in equation (95) should be treated with some
caution—terms of order @2) will probably be required for precise results. Consequently,
the (none expandedRrG-improved tree-level result given in the last section may be more
accurate in this regime. In figure 10 we have plotted the one-loop exparent function

of §, ford = 1 (¢ = 1), in the region o7 < § < 1, where the exponent is stilhcreasing

for decreasing.

where

(1467t
*=\ 2

Y

Nl
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Figure 10. The one-loop density decay exponenfor the minority A species (@) = O(r~%))
as a function o (for 0.7 < § < 1).

In principle, calculations can also be made for the case wijth> np, but where we
have crossed over to the regimi@ > (a) (for 0 < § < 1 and times > 1,). However, a
rigorous evaluation of the one-loop diagrams is now much more difficult, as the functional
forms for the densities and response functions will change over time. Nevertheless, since the
above corrections to the exponents come from asymptotic logarithmic terms, it is plausible
to suppose that the new exponent corrections will be dominated by contributions from the
final asymptotic regime. If this is indeed the case, then the one-loop exponents (although
not the amplitudes) will be unchanged from the previous results (equations (93)—(95)). This
calculation will, however, suffer from the same problem as described above.

4.3.d =d.

For the casal = d. = 2 we expect logarithmic corrections to the decay exponents, as
the reaction rates.;;; are marginal parameters at the critical dimension. We can find
the running couplings from the characteristic equation (53) by taking the dimit O in
equations (43)—(45):

5 ) 8Ryn -1

_ ~(Clnt 97
8 () L+ gr,, CINGe?1) «n -
. > 8Rpp -1 -1

_ ~(Cs *Int 98
gRBB(K ) 1+gRBBC5_lIn(K2t) ( ) ( )
Gr (D) = 81 ~ €Ay (99)

1+ gg,,C(1+8)~1In(k?r)

where we have taken the asymptotic limits. Corrections to the asymptotic running couplings
will be an order(In7)~! smaller, and consequently these asymptotic expressions will only
be correct at very large times. Hence our expressions for the densities will only be valid
when both this condition, and the crossover time constraints given below, are satisfied. In
what follows we shall assume the validity of the first of these two conditions. Notice that
the asymptotic running couplings are still orderegk2 < gr,, < 28r,, for 8§ < 1, so

we can use the mean-field solutions derived in section 2 as the basis fecihgroved
tree-level exponents and amplitudes. Making use of the Callan—-Symanzik solution (52) and
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the above running couplings, we find far) > (b):

Int

(a) ~ 8w Dyt

(100)

np
(87TI’ZAGDAT/ In l‘)(1+6)/2

(b) (101)

whereG = exp(g“” (1—%)) is a non-universal amplitude correction. Note that the
Raa RaB

next-order terms for the minority species are suppressed by a factor ofloiiy)/(In¢).
Using our expressions for the running couplings/densities in the mean-field crossovers, we
find that these expressions are valid for tinieg'n ' Int « ¢ <« T, where

(1+8)/2\ 2/ (1=8)
(G”A)> , (102)

(DsT1/InTy) = (
ng

For the caseS < 1 the system will eventually enter a second regime, where nowsthe

species will be in the majority. We have (fér£ 0):

Int

I B Dyt (103)
nAK
- 104
“ (8wrngHDpgt/Int)d+s70/2 (104)
with
A8 1+671 (¢ 1-1)/2
H:eXp( T <1_( + )gRBB>> K=<1—|—nA> ' (105)
8Ryp 8Rup ng
This is valid for times when > T, where
-1
(Hnp)+7/2 2/(1=879)
DT>/ INT) ~ | — 22 106
(Pule/INT2) (nA(1+51)1< (106)

Alternatively, if we begin withng > n,4, then foré £ 0 and (Dgt/Int) > ngl, we

have the same results as for the second of the above casesk with. Interestingly, the
logarithmic corrections we have derived in this section usingrthapproach differ slightly
from the Smoluchowski results given in section 2.

5. Conclusion

In this paper we have made a comparison of two methods for treating fluctuation effects
in a reaction—diffusion system. We have found that the Smoluchowski and field theory
approaches are rather similar—the Smoluchowski approximationd fer 2, giving the

same exponents as the renormalization-group improved tree level in the field theory. In
addition, we have gone on to calculate the field-theoretic one-loop corrections, which have
yielded improved values for the exponents. The advantage of the field theory is that it
provides a systematic way to calculate these corrections—a procedure which is lacking in
the Smoluchowski approach. Furthermore, the use of renormalization-group techniques has
demonstrated universality in the asymptotic amplitudes and exponents, in that<fd,

they only depend on the diffusivities and the initial densities, and not on the reaction rates.
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The theory we have developed in this paper can easily be extended to slightly different
situations. Consider first an annihilation/coagulation reaction—diffusion system, where the
following reactions occur:

A+A—> A B+B— B A+ B — 0.

The Smoluchowski approach differs from before only in the absence of factors of 2 in the
rate equation terms describing the same species reactions. Consequently, if we begin with
na > np then the minority species will decay as

b = O (@0 /2" d < 2). (107)

On the other hand, the field-theory description lacks only the factors of 2 in the action (32).
If this difference is followed through then the decay exponent irrtaémproved tree level
is seen to be the same as in the Smoluchowski approach. However, this difference of a
factor of 2 has a major effect on the response functions (where this factor appears as a
power) and as a result the new one-loop corrections will be different from those calculated
in section 4.2. These results should be compared with the exact solution [23-25] for the
minority species decay rate= O(t"), where
T

~ 2cos(§/(1+8))°
Note that in this case, although the Smoluchowski answer is qualitatively correct, it deviates
considerably from the exact answer. Hence we can see that application of the Smoluchowski
approach does not always lead to accurate exponents.

Another possible extension is to consider reaction—diffusion systems with more than
two species of particle. For example, examining a three-species system, we could have the
reactions:

y (108)

A+A— 0 A+B—=0 A+C—0
B+B—0 B+C— 0 C+C— 0.

Analysis of this situation is very similar to before and we merely remark that in the
appropriate asymptotic regimes the Smoluchowski radmproved tree-level exponents
(consisting of ratios of diffusion constants) are once again identical. Hence the convergence
between the Smoluchowski exponents and those obtained fromctiraproved tree level

is fairly robust, and is not simply confined to the two-species systems we have previously
been considering. A further possibility is to analyse the case where we have a continuous
distribution of diffusivities, but with only a&ingle reaction channel. This has been studied
from the Smoluchowski point of view by Krapivslat al [9], and it would be interesting

to extend ouRG methods to include this situation.

Our theory could also be employed to consider clustered immobile reactants—a
generalization of thed = 0 case included in our calculations. This situation has been
analysed by Ben—Naim [12], using the Smoluchowski approach, where the dimension of the
clusterd; was found to substantially affect the kinetics. Specifically, for codimensionality
d —d; < 2 (in a space of dimensiod) a finite fraction of the impurities was found to
survive, whereas forl — d; > 2 the clusters decayed away indefinitely. The formalism
we have presented in this paper could be adapted to study this clustered impurity problem,
where calculations could be made without reliance on the Smoluchowski approach.
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Appendix A. Response functions

Obtaining an exact analytic expression for the response functions is, in general, very hard.
Suppose we define the ‘trunk’ to be the line of propagators onto which the density lines
are attached, as shown at the bottom of figure 4. Difficulties arise from diagrams where
the ‘trunk’ changes from one propagator into the other, and then back again, as shown in
the last of the diagrams for the response function in figure 4. If diagrams of this type

are initially excluded then progress can be made. Consider first the two subseries shown in
figure Al, for the functiong (k, 1o, 11) and0(k, r,, t1), where diagrams of the above kind

have been excluded. These series can be summed exactly (using the same technique as
described in [8]), giving

é(k, o, tl) = eXFX—kZ(lz — tl)) eXp( — / 2(4)\,AACZ + )\ABb) dt) (Al)

fn

0k, tr, 1) = exp(—kz(tz — 1)) exp( — / 2(4A33b + Aapa) dt). (A2)

Al \' 1
a <F - o
(@ (j’ { { {
] i i
oo

\
PR (j:ﬁ(ﬁ (j‘:jj ]
Al A A
2 PS]
L} ] 1
+ m— + + + +

Figure Al. The diagrammatic equations foa)(¢ and ) 6.

The full response functions are now given by the diagrammatic equations shown in figure A2,
where all possible diagrams are included. Written out explicitly these give

Lk, t2,t1) =&(k, t2,11) — Aap [’2 £k, t2, D)a(r)M(k, T, 1) dr (A3)
1
M(k, t2,11) = —AaB /IZG(k, t2, T)b(T)L(k, T, 1) dr (A4)
4
N(k, o, t]_) = G(k, 1, l]_) — AAB /rz G(k, 1o, ‘L’)b(‘L’)P(k, T, [1) dr (A5)
4
P(k,tr,11) = —Aap /Zz &k, t2, D)a(t)N(k, T, 1,) dr. (A6)
151

In general, this set of coupled integral equations is intractable; however, we can make
progress in the limit wheré&:) > (b) or (b) > (a). Considering the case whe{@) > (b),

the dominant contributions to the response functions come from diagrams with the minimum
possible number ofb)¢ density line insertions. Accordingly, we can now truncate the full
diagrammatic equations, as shown in figure A3. Notice that to this aktde¥, and P
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Figure A2. The full diagrammatic equations satisfied by the response functions.
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Figure A3. The truncated diagrammatic equations for the response functions, valid for
(a) > (b}, or (b) > (a).

contain no(b)y density insertions, wherea# must contain one such insertion. In this
approximation we can now perform the integrals inside ghand 6 functions, using the
appropriate mean-field density:

Ahpaana dt—|n<1+2)\AAnAt2)2 (A?)

14 20 g4 4t 1+ 20 40411

t2 f2 AABnA 1 + 2)\AAnAt2 han /2
Ahppb + Aapa dt%/ dt:ll’]() A8
/ﬁ (4rpp ABQ) W L4 20aanat 14+ 20 40411 (A8)

17 2
/ (4)»AAa+)»ABb)dt%/
h 151
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and therefore

2
1+ 2k panats 2
k,to,t]) = ——————— ) exp(—k“(tr — ¢t A9
E(k, 12, 11) <1+2)»AAnAtz> pP(—k“(t2 — 11)) (A9)
1+ Z)LAAHAZ‘:L *an/2has 2
Ok, tr,t1)) = — " exp(—k“(t, — 11)8). A10
(k, 12, 1) <1+2)»AAnAtz> P(—k*(t2 — 11)9) (A10)

Using these expressions, it is now straightforward to derive the response functions given in
equations (62)—(65).

Appendix B. A one-loop integral

For the case wheréz:) > (b) the hardest of the three diagrams of figure 6 to evaluate is
(ii)—see equation (81). We shall evaluate it firstdn= 2, and then deduce its form in

d = 2 — ¢. Notice that the extra integration resulting from ttie insertion in the loop
ensures that this diagram is not divergent. Taking the asymptotic part of dinels’ pieces,

we find

—A2gnp d’k [ 2 ? o (2haana)’g
dro dry dr
2han(Qhpanat)ras/Zan | (2)2 Jo 0 n (L4 2xpan4t2)%1"

x exp(—k?(t2(1+ 8) — 211 + (1 — 8)1')). (B1)

Thek and¢’ integrals are elementary, giving
—Aignp /' dty (2haana)? /tz d 12 1 1 1
870 an(Rhaanat)y 5% Jo (L4 2haanatz)? Jo N\ (@ +8) —2m) [ 1

1-6 2t
T 2L+ 8) — 20)2 '”<<1+6)r2))' (B2)

Although the first part of the, integral is straightforward, the second piece involving the
logarithm is more difficult. However, if we make the transformation

211
v=——-"_"—-1
1+ 6

(B3)

we find

g (1) 21, 1, (A (g2
| = _(1-— In(1
/o U @+ 5) — 20)2 ”((1+5>t2) gt ? ”2/4 e Ind+o)

(B4)

where all time dependency has been removed from the integral limits. The.fimégral
is then easy to perform, and we end up with

—)\,%BVZB 1 2 1-6
S+ (=D Inl ——
327T)LAA(2)LAAI1A[)}‘AB/2)‘AA( +2( )|: <1+8>

(1-8)/(1+9) 2
_ / a4 :;”) In(1 + v)D N2 anat). (B5)

1

However, we now need to extend this analysis to determine the behaviour of the integral in
d = 2 — ¢. If we take the asymptotic part of all the pieces inside the integral, and perform
power counting, we find that it should scalerags/?44 t¢/2, However, this procedure is

not strictly valid, as in moving to the asymptotic version a fajse 0 divergence is created.
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Nevertheless, the integral is dominated by contributions from late times where arguments
based on power counting should be valid. Hencé ia 2 — ¢ we find

_)"%BnB 1 2 1-$6
s+ 22— in( =2
32mAA(2)\AAnA¢)MB/2m( + 5l )[ <1+5)
(1-8)/(1+8) (1+ v)Z
[ g
-1

Further subleading corrections (in time), which we have not calculated, will lack the
logarithm factor, and so will contribute to tlamplitudefor the minority species density.

In(l+ U):| + O(G))l‘e/z'n(Z)uAAnAl). (BG)
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