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Abstract. We study fluctuation effects in a two-species reaction–diffusion system, with three
competing reactionsA + A → ∅, B + B → ∅ andA + B → ∅. Asymptotic density decay rates
are calculated ford 6 2 using two separate methods—the Smoluchowski approximation and
also field-theoretic–renormalization group (RG) techniques. Both approaches predict power-law
decays, with exponents which depend asymptotically only on the ratio of diffusion constants, and
not on the reaction rates. Furthermore, we find that, ford < 2, the Smoluchowski approximation
and theRG improved tree level give identical exponents. However, whereas the Smoluchowski
approach cannot easily be improved, we show that theRG provides a systematic method for
incorporating additional fluctuation effects. We demonstrate this advantage by evaluating one-
loop corrections for the exponents ind < 2 and find good agreement with simulations and exact
results.

1. Introduction

Over the past decade there has been enormous interest in reaction–diffusion systems (see
[1–12] and references therein), with particular emphasis on the effects of fluctuations in low
spatial dimensions. Most attention has been paid to reactions of the formA + A → ∅ and
A + B → ∅ with a variety of different initial/boundary conditions. At or below an upper
critical dimensiondc, these systems exhibit fluctuation-induced anomalous kinetics, and
the straightforward application of traditional approaches, such as mean-field rate equations,
breaks down. Attempts to understand the role played by fluctuations ford 6 dc have
involved several techniques, including Smoluchowski-type approximations [9] and field-
theoretic methods [8, 10, 11]. In this paper we set out to study these fluctuation effects in a
system with three competing irreversible reactions:

A + A → ∅ B + B → ∅ A + B → ∅.

At t = 0 theA andB particles are distributed randomly (according to a Poisson distribution),
such that on large scales both densities are initially homogeneous. Our goal is to calculate
density decay exponents and amplitudes, taking into account fluctuation effects. In pursuit
of this aim, we analyse the system using both the Smoluchowski approximation and the
field-theory approach, and we show that the two methods are closely related. However,
whereas it is unclear how the Smoluchowski approach may be improved, the field theory
provides a systematic way to obtain successively more accurate values for the asymptotic
density decay exponents and amplitudes. We shall concentrate on situations where one of
the two species is greatly in the majority (as is almost always the case asymptotically)—so,
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for example, if speciesA is predominant, then we can safely neglect the reactionB+B → ∅.
This kind of assumption will lead to a considerable simplification in our analysis.

Previous work on this problem includes use of the Smoluchowski approximation [9], as
well as exact1D results obtained by Derridaet al [15–17] for the special case ofimmobile
minority particles. Derridaet al were, in fact, studying a different problem, namely the
probability that a given spin has never flipped in the zero-temperature Glauber dynamics
of the q-state Potts model in one dimension. By solving this model exactly [16, 17] they
showed that this probability decreased as a power law:t−3/8 for the Ising (q = 2) case.
However, in one dimension, the Ising spin-flip problem and the decay rate for the immobile
impurity in our reaction–diffusion system are exactly equivalent problems, and hence this
exact decay rate also holds in our case. We also mention one other previous result for
the immobile impurity problem, due to Cardy [18]. Using renormalization-group methods
similar to those employed in this paper, it was shown that the density of the minority species
away decays as a universal power law:t−β for d < 2, whereβ = 1

2 + O(ε) andε = 2− d.
The case where themajority species is immobile has also been solved (see [19]). In

this case the decay rate for the minority species is dominated by minority impurity particles
existing in regions where there happen to be very few of the majority particles. Since
these majority particles are strictly stationary, this situation is not describable using a rate
equation approach, and it turns out that the minority species decays away as exp(−td/(d+2)),
a result which is not accessible by perturbative methods.

In this paper, using a field-theory formalism and techniques from the renormalization
group, we will obtain decay rates and amplitudes for the general case of arbitrary
diffusivities—a regime previously only accessible using the Smoluchowski approximation.
Our basic plan is to map the microscopic dynamics, as described by a master equation, onto
a field theory. This theory is then renormalized (ford 6 2), and the couplings (reaction
rates) are shown to have O(ε) fixed points, whose values depend only on the ratio of the
species’ diffusion constants. Note that this system (with irreversible reactions) is particularly
simple in that only the couplings (and not the diffusivities) are renormalized. The next step
is to group together Feynman diagrams which are of the same order in the renormalized
couplings, i.e. diagrams with the same number of loops. These diagrams are then evaluated
and a Callan–Symanzik equation used to obtain improved asymptoticε expansions for
the densities. In this fashion, quantities of interest may be calculated systematically by
successively including higher-order sets of diagrams (with more loops) in the perturbative
sum.

One consequence of the theory is that the asymptotic decay rates and amplitudes for
d < dc will be independent of the reaction rates—a result which is in accordance with the
Smoluchowski approach. In fact, all physical quantities below the upper critical dimension
depend asymptotically only on the diffusivities and the initial densities, and in this sense
they display universality.

We now present a summary of our results for the density decay rates. In what follows
we definenA, nB to be the initial density ofA, B particles, andδ = (DB/DA) 6 1 to be
the ratio of the diffusion constants. Ford < dc = 2, nA � nB and n

−2/d

A D−1
A � t � t1

(wheret1 is a crossover time derived in section 4), we have (as in [8]):

〈a〉 ∼
(

1

4πε
+ 2 ln 8π − 5

16π
+ O(ε)

)
(DAt)−d/2. (1)

For the minority species, we find, from theRG improved tree-level approximation in the
field theory:

〈b〉 ∼ F(DAt)−β (2)
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where

β ≈ d

2

(
δ + 1

2

)d/2

F ≈ nB

(
0(ε/2)

nA(8π)d/2

)((δ+1)/2)d/2

. (3)

These decay exponents are identical to the Smoluchowski results. Performing a strictε

expansion on thisRG improved tree-level result gives an exponentβ = 1
2 + O(ε) for the

immobile impurity case (δ = 0). This is in agreement with previousRG calculations by
Cardy [18]. If we now go beyond the tree-level calculation by including one-loop diagrams,
then we obtain an improved value for the exponentβ using anε expansion:

β =
(

1 + δ

2

)(
1 − ε

2

[
3

2
+ ln

(
1 + δ

2

)
− δ(1 + δ)

4

[
1 + 2 ln

(
1 + δ

2

)]
− 1

4
(δ2 − 1)

(
1 + (1 + δ)

[
f

{
2

1 + δ

}
− π2

6

])])
+ O(ε2) (4)

where

f {x} = −
∫ x

1

ln u

u − 1
du (5)

is the dilogarithmic function [20]. This exponent is found to be in good agreement with
simulations [9] and exact results [16] ind = 1.

However, forδ < 1, the system crosses over to a second regime where〈b〉 � 〈a〉. This
situation is similar to the case where we begin withnB � nA. In that regime, at times
DBt � n

−2/d

B , and fornB � nA, δ 6= 0 andd < 2, we have

〈b〉 ∼
(

1

4πε
+ 2 ln 8π − 5

16π
+ O(ε)

)
(DBt)−d/2 (6)

for the majority species. Using theRG improved tree-level result for the minority species,
we obtain

〈a〉 ∼ E(DBt)−α (7)

with

α ≈ d

2

(
1 + δ−1

2

)d/2

E ≈ nA

(
0(ε/2)

nB(8π)d/2

)((1+δ−1)/2)d/2

. (8)

The exponent is again in agreement with the Smoluchowski result. If we attempt to improve
this calculation to one-loop accuracy, then we obtain

α =
(

1 + δ−1

2

)(
1 − ε

2

[
3

2
+ ln

(
1 + δ−1

2

)
− δ−1(1 + δ−1)

4

[
1 + 2 ln

(
1 + δ−1

2

)]
− 1

4
(δ−2 − 1)

(
1 + (1 + δ−1)

[
f

{
2

1 + δ−1

}
− π2

6

])])
+ O(ε2). (9)

This exponent is only valid forδ quite close to unity, and even in this region it may be less
accurate than the (nonε-expanded)RG improved tree-level result given above. This point
will be discussed further in section 4.2.

We next give results valid ford = 2, where we find extra logarithmic factors multiplying
the power-law decay rates. Treating first the case〈a〉 � 〈b〉 andδ 6 1, we have, from the
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RG improved tree level, an initial regime with

〈a〉 ∼ ln t

8πDAt
(10)

〈b〉 = O

((
ln t

t

)((1+δ)/2))
. (11)

However, forδ < 1, the system again crosses over to a second regime where〈b〉 � 〈a〉. In
this second regime the density decay exponents (though not the amplitudes) are the same
as for the case where we begin withnB � nA. In that case we have, forδ 6= 0:

〈b〉 ∼ ln t

8πDBt
(12)

〈a〉 = O

((
ln t

t

)((1+δ−1)/2))
. (13)

Crossover times for these cases are given in section 4.3.
We now give a brief description of the layout of this paper. In the next section we analyse

the system using the mean-field–Smoluchowski approach. We then set up the necessary
formalism for our field theory in section 3, and use it to perturbatively calculate values for
the density exponents and amplitudes in section 4. Finally, we give some conclusions and
prospects for future work in section 5.

2. The mean-field and Smoluchowski approach

The simplest description of a reaction–diffusion process is provided by the mean-field rate
equations. For the system we are considering with densitiesa andb, they take the form

da

dt
= −2λAAa2 − λABab (14)

db

dt
= −2λBBb2 − λABab (15)

whereλAA, λBB andλAB are the reaction rates and where we impose initial conditions of the
form a|t=0 = nA andb|t=0 = nB . In this approach we have completely neglected the effects
of fluctuations—in other words we have made assumptions of the form〈ab〉 ∝ 〈a〉〈b〉 etc,
where the angular brackets denote averages over the noise. Below the critical dimension,
where fluctuations become relevant, this sort of approximation will break down.

Nevertheless, even at the mean-field level, the complete solution set for these rate
equations is quite complicated. In what follows we shall restrict our analysis to the case
where 2λBB < λAB < 2λAA. The solution for this particular parameter set will be required
for our later field-theoretic analysis. Following [9], it is easy to show (by forming a rate
equation for the concentration ratio) that(a/b) → 0 as t → ∞. Thus if we begin with
initial conditions wherenA � nB , we can identify two distinct regimes—an early-time
regime wherea � b and, after a crossover, a late-time (true asymptotic) regime where
b � a. Treating the early-time regime first, we find (after some algebra):

a ∼ (2λAAt)−1 (16)

b ∼ nB

(2nAλAAt)λAB/2λAA
. (17)
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Note that theA particles are decaying away more quickly than theB ’s, so eventually we
crossover to a second regime:

b ∼ (2λBBt)−1 (18)

a ∼ nA

(2nBλBBt)λAB/2λBB

(
1 + (λAB − 2λAA)

(2λBB − λAB)

nA

nB

)−1− λAB (λAB −2λBB )

2λBB (λAB −2λAA)

. (19)

Alternatively, if we begin withnB � nA, then we have a single asymptotic regime:

b ∼ (2λBBt)−1 (20)

a ∼ nA

(2nBλBBt)λAB/2λBB
. (21)

However, if we now wish to extend our results at or below the upper critical dimension,
we must attempt to include some of the fluctuation effects. The simplest way in which this
can be done is to employ the Smoluchowski approximation [13, 14, 9]. The essential idea of
this approach is to relate the effective reaction ratesλeff

{ij} to the diffusion constantsDA, DB .
Suppose we want to calculate the reaction rateλeff

AB . We begin by choosing a (fixed)A
species target ‘trap’, which is surrounded byB particles. When aB particle approaches
within a distanceR of the target, a reaction is deemed to have occurred. Consequently,
the reaction rate may be obtained by solving a diffusion equation with boundary conditions
of fixed density asr → ∞, and absorption atr = R. The flux of B particles across the
d-dimensional sphere of radiusR is then proportional to an effective microscopic reaction
rate. If we now generalize to the case where both theA andB species are mobile, then we
find (in dimensiond < 2 and in the large-time limit):

λeff
AB ∼ constant× (DA + DB)d/2td/2−1. (22)

For d = 2 we obtain logarithmic corrections:

λeff
AB ∼ constant× (DA + DB)

ln((DA + DB)t)
. (23)

The Smoluchowski reaction rates forλeff
AA andλeff

BB are obtained in a similar fashion. Note
that aboved = 2 the reaction rate approaches a limiting (constant) value, and we see that
the Smoluchowski approach predicts a critical dimension ofdc = 2 for this system. This is
simply related to the re-entrancy property of random walks ind 6 2. It is the inclusion of
this effect which accounts for the improvement introduced by the Smoluchowski approach.

If we now substitute these modified reaction rates into the rate equations, we can obtain
the Smoluchowski improved density exponents. For the case wherenA � nB , we find an
initial regime with

a = O(t−d/2) (24)

b = O

(
t−

d
2(

1+δ
2 )

d/2
)

. (25)

Once again, since theA particles are decaying away faster than theB ’s, we cross over to
a second regime, where (for 0< δ < 1)

b = O(t−d/2) (26)

a = O

(
t
− d

2

(
1+δ−1

2

)d/2)
. (27)

This second set of exponents is the same as for the case where we begin withnB � nA and
δ 6= 0. In this situation no crossover occurs and the exponents are valid for all asymptotic
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times. These exponents can be compared favourably with both simulations [9], and exact
results [17]. For example, the decay rate for an immobile minority impurity is given by
Smoluchowski to be≈ t−0.354. This compares well with the exact decay rate oft−0.375.

Turning to the cased = dc = 2 andnA � nB , we obtain, for the initial regime:

a = O

(
ln t

t

)
(28)

b = O

((
ln t

t

)((1+δ)/2)

(ln t)((1+δ)/2) ln((1+δ)/2)

)
. (29)

We again eventually crossover to a second regime, where (for 0< δ < 1):

b = O

(
ln t

t

)
(30)

a = O

((
ln t

t

)((1+δ−1)/2)

(ln t)((1+δ−1)/2) ln((1+δ−1)/2)

)
. (31)

This second set of exponents is again valid (for all asymptotic times) in the case where we
begin withnB � nA andδ 6= 0.

Note that the Smoluchowski approach can also be employed ford > dc, where again
we will find (time-independent) reaction rates which depend on the diffusion constants.
However, our later field-theoretic analysis shows that there is no strict justification for this
procedure. Nevertheless, a recent Smoluchowski-based study has been made of a system
with heterogeneous single-species annihilation [9]. In this situation we have only one
fundamental reaction process, but different reaction rates may still arise, for example, by
having two or more different particle masses (and hence two or more different diffusion
constants). In this case it is physically reasonable to suppose that the exponents ford > dc

(which are ratios of reaction rates) may again depend only on the diffusivity ratios, with any
other parameters cancelling out. However, in the general case, where the reaction processes
are genuinely distinct this will not be the case.

Overall, we have seen that the Smoluchowski approach is a simple way to incorporate
some fluctuation effects into the rate equation approach. Unfortunately, it is not at all clear
how these methods may be systematically improved. It is for this reason that we turn to the
main purpose of this paper—the development of an alternative field-theoretic framework.

3. The field theory approach

Fluctuation effects in reaction–diffusion systems have previously been successfully tackled
using techniques borrowed from field theory and also from the renormalization group.
Examples include studies of the diffusion-limited reactionsA+A → ∅ [8] andA+B → ∅
[10, 11]. The first step in this analysis is to write down a master equation, which exactly
describes the microscopic time evolution of the system. Using methods developed by
Doi [21] and Peliti [22], this can be mapped onto a Schrödinger-like equation, with the
introduction of a second quantized Hamiltonian, and then onto a field theory, with an action
S. These steps have been described in detail elsewhere [21, 22, 8, 10, 11], and consequently
we shall simply give the resulting action appropriate for our theory:

S =
∫

ddx

( ∫
dt [ā(∂t − ∇2)a + b̄(∂t − δ∇2)b + 2λAAāa2 + λAAā2a2 + 2λBBb̄b2
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+λBBb̄2b2 + λABāab + λABb̄ab + λABāb̄ab] − ānA − b̄nB

)
. (32)

Here we have definedδ = (DB/DA) 6 1 and also introduced the response fieldsā and b̄.
In addition timet , together with the reaction ratesλ{ij} have been rescaled to absorb the
diffusion constantDA. Averaged quantities are then calculated according to

〈X(t)〉 = N −1
∫

Da Dā Db Db̄ X(t)e−S (33)

where

N =
∫

Da Dā Db Db̄e−S. (34)

Notice that in the path integral∫
Da Dā Db Db̄e−S (35)

integration over the fields̄a, a and b̄, b, whilst neglecting the quartic terms, leads to a
recovery of the mean-field rate equations.

Performing power counting on the actionS, we can now give the natural canonical
dimensions for the various parameters appearing in the action:

[t ] ∼ k−2 [a], [b], [nA], [nB ] ∼ kd [ā], [b̄] ∼ k0 [λ{ij}] ∼ k2−d . (36)

Notice that the reaction rates become dimensionless ind = 2, which we therefore postulate
as the upper critical dimension for the system, in agreement with the Smoluchowski
prediction.

From the actionS, we can see that the propagators for the theory are given by

Gaā(k, t − t ′) =
{

e−k2(t−t ′) for t > t ′

0 for t < t ′
(37)

Gbb̄(k, t − t ′) =
{

e−k2(t−t ′)δ for t > t ′

0 for t < t ′.
(38)

Diagrammatically, we representGaā by a thin full line andGbb̄ by a thin dotted line. The
vertices for the theory are given in figure 1.

3.1. Renormalization

One of the most important features of this theory, as mentioned in the introduction, is the
relative simplicity of its renormalization. Examination of the vertices given in figure 1
reveals that it is not possible to draw diagrams which dress the propagators. Hence the bare
propagators are the full propagators for the theory. Consequently, the only renormalization
needed involves the reaction ratesλ{ij}, and in particular the diffusion constants (orδ) are
not renormalized.

The temporally extended vertex functions for the reaction rates are given by the
diagrammatic sums given in figure 2. As is the case in similar theories [8, 10, 11], these
sums may be evaluated exactly, using Laplace transforms:

λAA(k, s) = λAA

1 + λAAC0(ε/2)(s + 1
2k2)−ε/2

(39)

λBB(k, s) = λBB

1 + λBBC0(ε/2)δ−1(s/δ + 1
2k2)−ε/2

(40)
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Figure 1. Vertices for the field theory.

Figure 2. The temporally extended vertex functions (a) λAA(k, s), (b) λBB(k, s), and (c)
λAB(k, s).

λAB(k, s) = λAB

1 + λAB2−ε/2C0(ε/2)(1 + δ)−d/2(s + k2δ/(1 + δ))−ε/2
(41)

whereC = 2/(8π)d/2 ands is the Laplace-transformed time variable.
We can now use these vertex functions to define the three dimensionless renormalized

and bare couplings, withs = κ2, k = 0 as the normalization point:

gR{ij} = κ−ελ{ij}(k, s)|s=κ2,k=0 g0{ij} = κ−ελ{ij}. (42)

Consequently, we can define threeβ functions:

β(gRAA
) = κ

∂

∂κ
gRAA

= −εgRAA
+ εC0(ε/2)g2

RAA
(43)

β(gRBB
) = κ

∂

∂κ
gRBB

= −εgRBB
+ εC0(ε/2)δ−d/2g2

RBB
(44)

β(gRAB
) = κ

∂

∂κ
gRAB

= −εgRAB
+ 2−ε/2εC0(ε/2)(1 + δ)−d/2g2

RAB
(45)

and three fixed pointsβ(g∗
R{ij}) = 0:

g∗
RAA

= (C0(ε/2))−1 (46)
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g∗
RBB

= (C0(ε/2)δ−d/2)−1 (47)

g∗
RAB

=
(

C0(ε/2)
1

2

(
1 + δ

2

)−d/2)−1

. (48)

Finally, we see from (39)–(41) that the expansion ofg0{ij} in powers ofgR{ij} is given by

g0{ij} = gR{ij} +
g2

R{ij}

g∗
R{ij}

+ · · · . (49)

3.2. Callan–Symanzik equation

We now exploit the fact that physical quantities calculated using the field theory must be
independent of the choice of normalization point. This leads us to a Callan–Symanzik
equation: [

κ
∂

∂κ
+ β(gRAA

)
∂

∂gRAA

+ β(gRBB
)

∂

∂gRBB

+ β(gRAB
)

∂

∂gRAB

]
〈a〉R = 0. (50)

However, dimensional analysis implies[
κ

∂

∂κ
− 2t

∂

∂t
+ dnA

∂

∂nA

+ dnB

∂

∂nB

− d

]
〈a〉R(t, nA, nB, gR{ij} , δ, κ) = 0. (51)

Exactly similar equations hold for〈b〉R. Eliminating the terms involvingκ and solving by
the method of characteristics, we find

〈a〉R(t, nA, nB, gR{ij} , δ, κ) = (κ2t)−d/2〈a〉R(κ−2, ñA(κ−2), ñB(κ−2), g̃R{ij}(κ
−2), δ, κ) (52)

with the characteristic equations:

2t
∂ñA

∂t
= −dñA 2t

∂ñB

∂t
= −dñB 2t

∂g̃R{ij}

∂t
= β(g̃R{ij}) (53)

and initial conditions

ñA(t) = nA ñB(t) = nB (54)

g̃RAA
(t) = gRAA

g̃RBB
(t) = gRBB

g̃RAB
(t) = gRAB

. (55)

These equations have the exact solutions:

ñA(t ′) =
(

t

t ′

)d/2

nA ñB(t ′) =
(

t

t ′

)d/2

nB (56)

and

g̃R{ij}(t
′) = g∗

R{ij}

(
1 +

g∗
R{ij} − gR{ij}

gR{ij}(t/t ′)ε/2

)−1

. (57)

In the large-t limit g̃R{ij} → g∗
R{ij} , a relationship which will allow us to relate an expansion

in powers of the renormalized couplingsgR{ij} to an ε expansion using (52). In our later
density calculations we will assume that this asymptotic regime has been reached.
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3.3. Tree diagrams

In order to perform systematicε expansion calculations we now need to identify the
leading and subleading terms in an expansion in powers ofg0{ij} . In calculating〈a〉 and

〈b〉, contributions from tree diagrams are of orderg
q

0{ij}n
1+q

{i} , for integerq, and densities

n{i} = {nA, nB}. However, diagrams withl loops will be of ordergq+l

0{ij} n
1+q

{i} . The addition
of loops makes the powerg0{ij} higher relative to the power of the densities—so we conclude
that the number of loops gives the order of the diagram.

The lowest-order diagrams contributing to〈a〉 and 〈b〉 are the tree diagrams shown in
figure 3. We represent the classical (tree-level) density〈a〉cl by a wavy full line, and〈b〉cl by
a wavy dotted line. These sets of diagrams are equivalent to the mean-field rate equations,
as may be seen by acting on each by their respective inverse Green functions.

Figure 3. Tree-level diagrams for the densities〈a〉 and〈b〉.

The second tree-level quantities appearing in the theory are the response functions:

L(k, t2, t1) = 〈a(−k, t2)ā(k, t1)〉 (58)

M(k, t2, t1) = 〈b(−k, t2)ā(k, t1)〉 (59)

N(k, t2, t1) = 〈b(−k, t2)b̄(k, t1)〉 (60)

P(k, t2, t1) = 〈a(−k, t2)b̄(k, t1)〉 (61)

which we represent diagrammatically by the thick lines shown in figure 4. These functions
can be evaluated analytically, but only in the limit〈a〉 � 〈b〉, or 〈b〉 � 〈a〉. The details of
this calculation are presented in appendix A, where the following results are derived (for
〈a〉 � 〈b〉):

L(k, t2, t1) =
(

1 + 2λAAnAt1

1 + 2λAAnAt2

)2

exp(−k2(t2 − t1)) (62)

N(k, t2, t1) =
(

1 + 2λAAnAt1

1 + 2λAAnAt2

)λAB/2λAA

exp(−k2(t2 − t1)δ) (63)

P(k, t2, t1) = −λABnA

(1 + 2λAAnAt1)
λAB/2λAA

(1 + 2λAAnAt2)2
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Figure 4. The response functions.

× exp(−k2(t2 − t1δ))

∫ t2

t1

exp(k2(1 − δ)t ′)
(1 + 2λAAnAt ′)−1+λAB/2λAA

dt ′ (64)

M(k, t2, t1) = −λABnB

(1 + 2λAAnAt1)
2

(1 + 2λAAnAt2)λAB/2λAA

× exp(−k2(t2δ − t1))

∫ t2

t1

exp(−k2(1 − δ)t ′)
(1 + 2λAAnAt ′)2

dt ′. (65)

An extra check on validity of these response functions is provided by the relations

L(0, t, 0) = ∂〈a(t)〉
∂nA

N(0, t, 0) = ∂〈b(t)〉
∂nB

(66)

P(0, t, 0) = ∂〈a(t)〉
∂nB

M(0, t, 0) = ∂〈b(t)〉
∂nA

(67)

which follow from the definition of the response functions and from the initial condition
terms in the actionS. It is easy to check that the above response functions do indeed satisfy
these relations.

For the opposite situation wherenB � nA (and hence〈b〉 � 〈a〉), we could use a
formalism similar to the above for the density calculations. However, it is much simpler to
map this case onto the〈a〉 � 〈b〉 regime by swapping the labels on theA andB particles,
and then relabelling:

nA ↔ nB λAA ↔ λBB DA ↔ DB.

We can then obtain the exponents and amplitudes for this second regime with no extra work.
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This concludes our discussion of the field-theory formalism. The framework we
have built up allows (in principle) the systematic calculation of fluctuation effects in all
circumstances. However, it is only in the case where one of the species is greatly in
the majority where the equations (for the tree-level densities and response functions) are
sufficiently simple for analytic progress to be made. We now turn to use of the field theory
in calculating the fluctuation modified densities.

4. Density calculations

4.1. Tree level

The first step in using our field theory to include fluctuation effects is to insert the mean-
field (tree-level) solution into the Callan–Symanzik solution (52), using the results for
the running densities/couplings (56), (57). Since the fixed points for the couplings obey
2g∗

RBB
< g∗

RAB
< 2g∗

RAA
(whenδ < 1) it is appropriate to use the mean-field solutions derived

in section 2. For the case wherenA � nB , this gives

〈a〉 ∼
(

0(ε/2)

(8π)d/2

)
(DAt)−d/2 (68)

and

〈b〉 ∼ F(DAt)−β (69)

with

β ≈ d

2

(
1 + δ

2

)d/2

F ≈ nB

(
0(ε/2)

nA(8π)d/2

)((1+δ)/2)d/2

(70)

valid for n
−2/d

A D−1
A � t � t1, where

DAt1 ≈
(

nB

n
((1+δ)/2)d/2

A

)(2/d)(((1+δ)/2)d/2−1)−1

. (71)

These modified crossover times are obtained by using the expressions for the running
couplings/densities in the mean-field crossovers. Notice that the density decay exponents
derived here are the same as those obtained from the Smoluchowski approach. However,
as we are performing anε expansion, we are only strictly justified in retaining leading-
orderε terms. Consequently, we find, for the minority species density decay exponent and
amplitude:

β =
(

1 + δ

2

)
+ O(ε) F = nB

(
1

4πεnA

+ O(ε0)

)((1+δ)/2)+O(ε)

. (72)

Eventually, however, as theA particles are decaying away more quickly than theB particles
(due to their greater diffusivity whenδ < 1), we crossover to a second regime where
〈b〉 � 〈a〉. For 0< δ < 1, we have

〈b〉 ∼
(

0(ε/2)

(8π)d/2

)
(DBt)−d/2 (73)

〈a〉 ∼ E(DBt)−α (74)
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with

α ≈ d

2

(
1 + δ−1

2

)d/2

=
(

1 + δ−1

2

)
+ O(ε) (75)

E ≈ nAf (d)

(
0(ε/2)

nB(8π)d/2

)((1+δ−1)/2)d/2

= nAf (2)

(
1

4πεnB

+ O(ε0)

)((1+δ−1)/2)+O(ε)

(76)

where

f (d) =
(

1 + [((1 + δ)/2)d/2 − 1]nA

[δd/2 − ((1 + δ)/2)d/2]nB

)−1−((1+δ−1)/2)d/2

(
((1+δ)/2)d/2−δd/2

((1+δ)/2)d/2−1

)
. (77)

This result is valid fort � t2, where

DBt2 ≈
(

nAf (d)(1 + δ−1)d/2

n
((1+δ−1)/2)d/2

B

)(2/d)(((1+δ−1)/2)d/2−1)−1

. (78)

Note that forδ = 1 the first crossover timet1 → ∞—in this case the two species decay
away at the same rate, and so no further crossover occurs. Alternatively ifδ = 0, then the
first regime is left, but the second crossover timet2 → ∞. In that case the minority species
finally decays away in the exponential fashion predicted in [19]. For the intermediate case
whereδ is small, but non-zero, the decay exponent for the minority species becomes large
in the final regime. The explanation for this result lies in the relatively large diffusivity
of the minority A species (ifDA is large) and/or the increased density amplitude for the
majority B particles (if DB is small). Both these effects will lead to an increased rate of
decay for theA species.

Finally, if the initial conditions are changed such that nownB � nA, with δ 6= 0, then
we obtain the same results as for the second of the above regimes forDBt � n

−2/d

B , with
f ≈ 1.

Figure 5. One-loop diagram for〈a〉 (when〈a〉 � 〈b〉).

4.2. One-loop results

We now describe the one-loop improvements to the tree-level result. In the regime
〈a〉 � 〈b〉, the dominant diagrams will be those where the minimum possible number
of 〈b〉cl insertions are made. For the majorityA species the appropriate diagram is shown
in figure 5, where there are no〈b〉cl insertions. This is identical to the one-loop diagram for
A + A → ∅ evaluated in [8], which gives, in conjunction with the subleading terms from
the tree level,

〈a〉 ∼
(

1

4πε
+ 2 ln 8π − 5

16π
+ O(ε)

)
(DAt)−d/2. (79)
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Figure 6. One-loop diagrams for〈b〉 (when〈a〉 � 〈b〉).

In addition, for the subset of diagrams with no〈b〉cl insertions, the decay exponent is exact.
More details of this calculation, including a demonstration of the cancellation of divergences,
can be found in [8].

Turning now to the one-loop calculation for the minority species, the appropriate
diagrams are the three shown in figure 6, each of which contains just one〈b〉cl insertion:

(i)
−4λABλ2

AAn2
AnB

(2λAAnAt)1+λAB/2λAA

∫
ddk

(2π)d

∫ t

0
dt2

∫ t2

0
dt1 (t − t2)

(1 + 2λAAnAt1)
2

(1 + 2λAAnAt2)3

× exp[−2k2(t2 − t1)] (80)

(ii)
−2λ2

ABλAAn2
AnB

(2λAAnAt)λAB/2λAA

∫
ddk

(2π)d

∫ t

0
dt2

∫ t2

0
dt1

∫ t2

t1

dt ′
(1 + 2λAAnAt1)

2

(1 + 2λAAnAt2)2

× 1

(1 + 2λAAnAt ′)2
exp[−k2(t2(1 + δ) − 2t1 + (1 − δ)t ′)] (81)

(iii)
λ2

ABnAnB

(2λAAnAt)λAB/2λAA

∫
ddk

(2π)d

∫ t

0
dt2

∫ t2

0
dt1

(1 + 2λAAnAt1)

(1 + 2λAAnAt2)2

× exp[−k2(1 + δ)(t2 − t1)]. (82)

The detail of the evaluation of these diagrams is rather subtle. Essentially we are
interested in extracting the most divergent parts of these integrals, which will turn out to
be pieces of O(ε−1) and O(ε0). However, we must be careful not to confuse genuine bare
divergences (of O(ε−1) which must be removed by the renormalization of the theory), with
logarithmic pieces, which we must retain. The divergences arise in diagrams (i) and (iii) as
the difference in timet2 − t1, between the beginning and end of the loops, tends to zero (in
d = 2). After the process of renormalization we find corrections of the form

1 + (constant)ε ln((constant)td/2) + O(ε2). (83)

If this series is identified as the expansion of an exponential, then we find that our one-loop
diagrams (together with subleading components from the tree level) have provided O(ε)

corrections to the exponents.
Diagrams (i) and (iii) are relatively straightforward to evaluate. Thek and t1 integrals

are elementary, and the finalt2 integrals can be done by parts to extract the necessary most
divergent pieces (up to O(ε0)). The second diagram of figure 6 is more complicated, and we
perform its evaluation in appendix B—although we are only able to extract the logarithmic
piece of O(t−λAB/2λAA tε/2 ln t). There will be corrections to this of O(t−λAB/2λAA tε/2)

(contributing to a modified amplitude) which we have been unable to calculate. We find
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asymptotically:

(i)
−λABnB

8π(2λAAnAt)λAB/2λAA

(
2t ε/2(ln(2λAAnAt) − 1)

ε
+ t ε/2(ln(2λAAnAt) − 1) ln(8π)

+15t ε/2

4
− 3

2
t ε/2 ln(2λAAnAt) −

∫ t

0
t
−1+ε/2
2 ln(1 + 2λAAnAt2) dt2 + O(ε)

)
(84)

(ii)
−λ2

ABnB

32πλAA(2λAAnAt)λAB/2λAA

(
δ + 1

2
(δ2 − 1)

[
ln

(
1 − δ

1 + δ

)
−

∫ (1−δ)/(1+δ)

−1
dv

(1 + v)2

v2
ln(1 + v)

]
+ O(ε)

)
t ε/2 ln(2λAAnAt) (85)

(iii)
λ2

ABnB(4π(1 + δ))−1

2λAA(2λAAnAt)λAB/2λAA

(
2t ε/2 ln(2λAAnAt)

ε
+ t ε/2 ln(2λAAnAt) ln(4π(1 + δ))

−t ε/2(ln(2λAAnAt) − 1) −
∫ t

0
t
−1+ε/2
2 ln(1 + 2λAAnAt2) dt2 + O(ε)

)
. (86)

To one-loop accuracy we can make the replacement:λ{ij} = κεg0{ij} → κεgR{ij} . These
results must now be combined with the subleading terms from the tree level. Using
equation (49), we find

〈b〉 ∼ nB

(2λAAnAt)λAB/2λAA
= nB

(2κεgRAA
nAt)gRAB

/2gRAA

×
(

1 − gRAB

2g∗
RAA

− g2
RAB

2gRAA
g∗

RAB

ln(2κεgRAA
nAt)

+ gRAB

2g∗
RAA

ln(2κεgRAA
nAt) + O(g2

R)

)
. (87)

If we now insert explicitε-expanded values for the fixed pointsg∗
R{ij} , then we discover that

the bare divergences cancel between (84), (86) and (87). With insertion into the Callan–
Symanzik solution (52), we also find that the pieces we have left as integrals in (i) and (iii)
(which are O(tε/2(ln t)2)) also mutually cancel. Eventually we find

〈b〉 ∼ constant× t−(d/2)((1+δ)/2)d/2

(
1 + ε(1 + δ)

8

[
1 − 2(1 + δ)

(
δ

4
+ δ2 − 1

8

(
ln

(
1 − δ

1 + δ

)
−

∫ (1−δ)/(1+δ)

−1
dv

(1 + v)2

v2
ln(1 + v)

))]
ln(constant× td/2) + O(ε2)

)
(88)

where we have neglected O(ε) pieces which, aside from the prefactor, are timeindependent.
These terms contribute only to the density amplitude. We now evaluate the integral in (88),
using ∫ (1−δ)/(1+δ)

−1

ln(1 + v)

v
dv =

∫ 2/(1+δ)

0

ln u

u − 1
du

=
∫ 1

0

ln u

u − 1
du +

∫ 2/(1+δ)

1

ln u

u − 1
du

= π2

6
− f

{
2

1 + δ

}
(89)
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wheref {x} is the dilogarithm function [20]. The other parts of the integral are elementary.
The next step is toε expand theRG improved tree-level result:

d

2

(
1 + δ

2

)d/2

=
(

1 + δ

2

)(
1 − ε

2

(
1 + ln

(
1 + δ

2

))
+ O(ε2)

)
. (90)

Then, exponentiating theε expansion in (88), we find〈b〉 = O(t−β), where

β =
(

1 + δ

2

)(
1 − ε

2

[
3

2
+ ln

(
1 + δ

2

)
− δ(1 + δ)

4

[
1 + 2 ln

(
1 + δ

2

)]
− 1

4
(δ2 − 1)

(
1 + (1 + δ)

[
f

{
2

1 + δ

}
− π2

6

])])
+ O(ε2). (91)

β is plotted as a function ofδ for ε = 1 (d = 1) in figure 9. For the case whereδ = 1,
we recover the decay rate〈b〉 = O(t−d/2). This is to be expected, as whenδ = 1 we are
effectively again dealing with a single-species reaction–diffusion system (at least ford < 2).
In that case the density decay exponent is known to all orders in perturbation theory [8], and
is in agreement with our result. For the case whereδ = 0 andd = 1, the decay exponent
is also known exactly to be〈b〉 = O(t−0.375) [17]. This can be compared with our result,
where we find

β = 1

16
+ 1

4
ln 2 + π2

64
≈ 0.39 (δ = 0). (92)

Consequently, this answer is a modest improvement over the Smoluchowski result derived
in section 2, and also in [9].

Figure 7. One-loop diagram for〈b〉 (when〈b〉 � 〈a〉).

Figure 8. One-loop diagrams for〈a〉 (when〈b〉 � 〈a〉).

For the casenB � nA (and hence〈b〉 � 〈a〉), we could follow the same route as
described above, by evaluating the one-loop diagrams shown in figures 7 and 8. However,
as we mentioned in the last section we can much more easily obtain these corrections by
swapping the labels on theA andB particles, and then relabelling:

nA ↔ nB λAA ↔ λBB DA ↔ DB.
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Figure 9. The one-loop density decay exponentβ for the minorityB species (〈b〉 = O(t−β))
as a function ofδ.

Following this procedure, the majority species amplitude/exponent can be found by taking
DA → DB in equation (79):

〈b〉 ∼
(

1

4πε
+ 2 ln 8π − 5

16π
+ O(ε)

)
(DBt)−d/2. (93)

We can obtain the one-loop minority species exponent by substitutingδ → δ−1 in
equation (91):

〈a〉 = O(t−α) (94)

where

α =
(

1 + δ−1

2

)(
1 − ε

2

[
3

2
+ ln

(
1 + δ−1

2

)
− δ−1(1 + δ−1)

4

[
1 + 2 ln

(
1 + δ−1

2

)]
− 1

4
(δ−2 − 1)

(
1 + (1 + δ−1)

[
f

{
2

1 + δ−1

}
− π2

6

])])
+ O(ε2). (95)

Notice, however, that in forming the one-loop corrections for the minority species exponent,
we have had to expand theRG improved tree-level result:

d

2

(
1 + δ−1

2

)d/2

=
(

1 + δ−1

2

)(
1 − ε

2

(
1 + ln

(
1 + δ−1

2

))
+ O(ε2)

)
. (96)

The error arising from this expansion will become large asδ becomes small. Eventually
this inaccuracy will cause the exponent to reach a maximum and thendecreaseas δ is
further reduced—behaviour which is clearly unphysical. In order to reduce the error, and
to ensure that the expansion in equation (96) is qualitatively correct, we need to retain the
O(ε2) terms. Hence the one-loop exponent in equation (95) should be treated with some
caution—terms of order O(ε2) will probably be required for precise results. Consequently,
the (non-ε expanded)RG-improved tree-level result given in the last section may be more
accurate in this regime. In figure 10 we have plotted the one-loop exponentα as a function
of δ, for d = 1 (ε = 1), in the region 0.7 6 δ 6 1, where the exponent is stillincreasing
for decreasingδ.
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Figure 10. The one-loop density decay exponentα for the minorityA species (〈a〉 = O(t−α))
as a function ofδ (for 0.7 6 δ 6 1).

In principle, calculations can also be made for the case withnA � nB , but where we
have crossed over to the regime〈b〉 � 〈a〉 (for 0 < δ < 1 and timest � t2). However, a
rigorous evaluation of the one-loop diagrams is now much more difficult, as the functional
forms for the densities and response functions will change over time. Nevertheless, since the
above corrections to the exponents come from asymptotic logarithmic terms, it is plausible
to suppose that the new exponent corrections will be dominated by contributions from the
final asymptotic regime. If this is indeed the case, then the one-loop exponents (although
not the amplitudes) will be unchanged from the previous results (equations (93)–(95)). This
calculation will, however, suffer from the same problem as described above.

4.3. d = dc

For the cased = dc = 2 we expect logarithmic corrections to the decay exponents, as
the reaction ratesλ{ij} are marginal parameters at the critical dimension. We can find
the running couplings from the characteristic equation (53) by taking the limitε → 0 in
equations (43)–(45):

g̃RAA
(κ−2) = gRAA

1 + gRAA
C ln(κ2t)

∼ (C ln t)−1 (97)

g̃RBB
(κ−2) = gRBB

1 + gRBB
Cδ−1 ln(κ2t)

∼ (Cδ−1 ln t)−1 (98)

g̃RAB
(κ−2) = gRAB

1 + gRAB
C(1 + δ)−1 ln(κ2t)

∼ (C(1 + δ)−1 ln t)−1 (99)

where we have taken the asymptotic limits. Corrections to the asymptotic running couplings
will be an order(ln t)−1 smaller, and consequently these asymptotic expressions will only
be correct at very large times. Hence our expressions for the densities will only be valid
when both this condition, and the crossover time constraints given below, are satisfied. In
what follows we shall assume the validity of the first of these two conditions. Notice that
the asymptotic running couplings are still ordered 2g̃RBB

< g̃RAB
< 2g̃RAA

for δ < 1, so
we can use the mean-field solutions derived in section 2 as the basis for theRG-improved
tree-level exponents and amplitudes. Making use of the Callan–Symanzik solution (52) and
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the above running couplings, we find for〈a〉 � 〈b〉:

〈a〉 ∼ ln t

8πDAt
(100)

〈b〉 ∼ nB

(8πnAGDAt/ ln t)(1+δ)/2
(101)

whereG = exp

(
4π

gRAA

(
1− (1+δ)gRAA

gRAB

))
is a non-universal amplitude correction. Note that the

next-order terms for the minority species are suppressed by a factor of only(ln ln t)/(ln t).
Using our expressions for the running couplings/densities in the mean-field crossovers, we
find that these expressions are valid for timesD−1

A n−1
A ln t � t � T1, where

(DAT1/ ln T1) ≈
(

(GnA)(1+δ)/2

nB

)2/(1−δ)

. (102)

For the caseδ < 1 the system will eventually enter a second regime, where now theB

species will be in the majority. We have (forδ 6= 0):

〈b〉 ∼ ln t

8πDBt
(103)

〈a〉 ∼ nAK

(8πnBHDBt/ ln t)(1+δ−1)/2
(104)

with

H = exp

(
4πδ

gRBB

(
1 − (1 + δ−1)gRBB

gRAB

))
K =

(
1 + nA

nB

)(δ−1−1)/2

. (105)

This is valid for times whent � T2, where

(DBT2/ ln T2) ≈
(

(HnB)(1+δ−1)/2

nA(1 + δ−1)K

)2/(1−δ−1)

. (106)

Alternatively, if we begin withnB � nA, then for δ 6= 0 and (DBt/ ln t) � n−1
B , we

have the same results as for the second of the above cases, withK ≈ 1. Interestingly, the
logarithmic corrections we have derived in this section using theRG approach differ slightly
from the Smoluchowski results given in section 2.

5. Conclusion

In this paper we have made a comparison of two methods for treating fluctuation effects
in a reaction–diffusion system. We have found that the Smoluchowski and field theory
approaches are rather similar—the Smoluchowski approximation, ford < 2, giving the
same exponents as the renormalization-group improved tree level in the field theory. In
addition, we have gone on to calculate the field-theoretic one-loop corrections, which have
yielded improved values for the exponents. The advantage of the field theory is that it
provides a systematic way to calculate these corrections—a procedure which is lacking in
the Smoluchowski approach. Furthermore, the use of renormalization-group techniques has
demonstrated universality in the asymptotic amplitudes and exponents, in that, ford < 2,
they only depend on the diffusivities and the initial densities, and not on the reaction rates.
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The theory we have developed in this paper can easily be extended to slightly different
situations. Consider first an annihilation/coagulation reaction–diffusion system, where the
following reactions occur:

A + A → A B + B → B A + B → ∅.

The Smoluchowski approach differs from before only in the absence of factors of 2 in the
rate equation terms describing the same species reactions. Consequently, if we begin with
nA � nB then the minority species will decay as

b = O(t−d((1+δ)/2)d/2
) (d < 2). (107)

On the other hand, the field-theory description lacks only the factors of 2 in the action (32).
If this difference is followed through then the decay exponent in theRG-improved tree level
is seen to be the same as in the Smoluchowski approach. However, this difference of a
factor of 2 has a major effect on the response functions (where this factor appears as a
power) and as a result the new one-loop corrections will be different from those calculated
in section 4.2. These results should be compared with the exact solution [23–25] for the
minority species decay rateb = O(t−γ ), where

γ = π

2 cos−1(δ/(1 + δ))
. (108)

Note that in this case, although the Smoluchowski answer is qualitatively correct, it deviates
considerably from the exact answer. Hence we can see that application of the Smoluchowski
approach does not always lead to accurate exponents.

Another possible extension is to consider reaction–diffusion systems with more than
two species of particle. For example, examining a three-species system, we could have the
reactions:

A + A → ∅ A + B → ∅ A + C → ∅
B + B → ∅ B + C → ∅ C + C → ∅.

Analysis of this situation is very similar to before and we merely remark that in the
appropriate asymptotic regimes the Smoluchowski andRG-improved tree-level exponents
(consisting of ratios of diffusion constants) are once again identical. Hence the convergence
between the Smoluchowski exponents and those obtained from theRG-improved tree level
is fairly robust, and is not simply confined to the two-species systems we have previously
been considering. A further possibility is to analyse the case where we have a continuous
distribution of diffusivities, but with only asingle reaction channel. This has been studied
from the Smoluchowski point of view by Krapivskyet al [9], and it would be interesting
to extend ourRG methods to include this situation.

Our theory could also be employed to consider clustered immobile reactants—a
generalization of theδ = 0 case included in our calculations. This situation has been
analysed by Ben–Naim [12], using the Smoluchowski approach, where the dimension of the
clusterdI was found to substantially affect the kinetics. Specifically, for codimensionality
d − dI < 2 (in a space of dimensiond) a finite fraction of the impurities was found to
survive, whereas ford − dI > 2 the clusters decayed away indefinitely. The formalism
we have presented in this paper could be adapted to study this clustered impurity problem,
where calculations could be made without reliance on the Smoluchowski approach.
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Appendix A. Response functions

Obtaining an exact analytic expression for the response functions is, in general, very hard.
Suppose we define the ‘trunk’ to be the line of propagators onto which the density lines
are attached, as shown at the bottom of figure 4. Difficulties arise from diagrams where
the ‘trunk’ changes from one propagator into the other, and then back again, as shown in
the last of the diagrams for theL response function in figure 4. If diagrams of this type
are initially excluded then progress can be made. Consider first the two subseries shown in
figure A1, for the functionsξ(k, t2, t1) and θ(k, t2, t1), where diagrams of the above kind
have been excluded. These series can be summed exactly (using the same technique as
described in [8]), giving

ξ(k, t2, t1) = exp(−k2(t2 − t1)) exp

(
−

∫ t2

t1

(4λAAa + λABb) dt

)
(A1)

θ(k, t2, t1) = exp(−k2(t2 − t1)δ) exp

(
−

∫ t2

t1

(4λBBb + λABa) dt

)
. (A2)

Figure A1. The diagrammatic equations for (a) ξ and (b) θ .

The full response functions are now given by the diagrammatic equations shown in figure A2,
where all possible diagrams are included. Written out explicitly these give

L(k, t2, t1) = ξ(k, t2, t1) − λAB

∫ t2

t1

ξ(k, t2, τ )a(τ )M(k, τ, t1) dτ (A3)

M(k, t2, t1) = −λAB

∫ t2

t1

θ(k, t2, τ )b(τ )L(k, τ, t1) dτ (A4)

N(k, t2, t1) = θ(k, t2, t1) − λAB

∫ t2

t1

θ(k, t2, τ )b(τ )P (k, τ, t1) dτ (A5)

P(k, t2, t1) = −λAB

∫ t2

t1

ξ(k, t2, τ )a(τ )N(k, τ, t1) dτ. (A6)

In general, this set of coupled integral equations is intractable; however, we can make
progress in the limit where〈a〉 � 〈b〉 or 〈b〉 � 〈a〉. Considering the case where〈a〉 � 〈b〉,
the dominant contributions to the response functions come from diagrams with the minimum
possible number of〈b〉cl density line insertions. Accordingly, we can now truncate the full
diagrammatic equations, as shown in figure A3. Notice that to this orderL, N , and P
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Figure A2. The full diagrammatic equations satisfied by the response functions.

Figure A3. The truncated diagrammatic equations for the response functions, valid for
〈a〉 � 〈b〉, or 〈b〉 � 〈a〉.

contain no〈b〉cl density insertions, whereasM must contain one such insertion. In this
approximation we can now perform the integrals inside theξ and θ functions, using the
appropriate mean-field density:∫ t2

t1

(4λAAa + λABb) dt ≈
∫ t2

t1

4λAAnA

1 + 2λAAnAt
dt = ln

(
1 + 2λAAnAt2

1 + 2λAAnAt1

)2

(A7)∫ t2

t1

(4λBBb + λABa) dt ≈
∫ t2

t1

λABnA

1 + 2λAAnAt
dt = ln

(
1 + 2λAAnAt2

1 + 2λAAnAt1

)λAB/2λAA

(A8)
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and therefore

ξ(k, t2, t1) =
(

1 + 2λAAnAt1

1 + 2λAAnAt2

)2

exp(−k2(t2 − t1)) (A9)

θ(k, t2, t1) =
(

1 + 2λAAnAt1

1 + 2λAAnAt2

)λAB/2λAA

exp(−k2(t2 − t1)δ). (A10)

Using these expressions, it is now straightforward to derive the response functions given in
equations (62)–(65).

Appendix B. A one-loop integral

For the case where〈a〉 � 〈b〉 the hardest of the three diagrams of figure 6 to evaluate is
(ii)—see equation (81). We shall evaluate it first ind = 2, and then deduce its form in
d = 2 − ε. Notice that the extra integration resulting from the〈b〉cl insertion in the loop
ensures that this diagram is not divergent. Taking the asymptotic part of thet1 andt ′ pieces,
we find

−λ2
ABnB

2λAA(2λAAnAt)λAB/2λAA

∫
d2k

(2π)2

∫ t

0
dt2

∫ t2

0
dt1

∫ t2

t1

dt ′
(2λAAnA)2t2

1

(1 + 2λAAnAt2)2t ′2

× exp(−k2(t2(1 + δ) − 2t1 + (1 − δ)t ′)). (B1)

The k and t ′ integrals are elementary, giving

−λ2
ABnB

8πλAA(2λAAnAt)λAB/2λAA

∫ t

0

dt2 (2λAAnA)2

(1 + 2λAAnAt2)2

∫ t2

0
dt1 t2

1

(
1

(t2(1 + δ) − 2t1)

[
1

t1
− 1

t2

]
+ 1 − δ

(t2(1 + δ) − 2t1)2
ln

(
2t1

(1 + δ)t2

))
. (B2)

Although the first part of thet1 integral is straightforward, the second piece involving the
logarithm is more difficult. However, if we make the transformation

v = 2t1

(1 + δ)t2
− 1 (B3)

we find∫ t2

0
dt1

(1 − δ)t2
1

(t2(1 + δ) − 2t1)2
ln

(
2t1

(1 + δ)t2

)
= 1

8
(1 − δ2)t2

∫ (1−δ)/(1+δ)

−1
dv

(1 + v)2

v2
ln(1 + v)

(B4)

where all time dependency has been removed from the integral limits. The finalt2 integral
is then easy to perform, and we end up with

−λ2
ABnB

32πλAA(2λAAnAt)λAB/2λAA

(
δ + 1

2
(δ2 − 1)

[
ln

(
1 − δ

1 + δ

)
−

∫ (1−δ)/(1+δ)

−1
dv

(1 + v)2

v2
ln(1 + v)

])
ln(2λAAnAt). (B5)

However, we now need to extend this analysis to determine the behaviour of the integral in
d = 2 − ε. If we take the asymptotic part of all the pieces inside the integral, and perform
power counting, we find that it should scale ast−λAB/2λAA tε/2. However, this procedure is
not strictly valid, as in moving to the asymptotic version a falset2 = 0 divergence is created.
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Nevertheless, the integral is dominated by contributions from late times where arguments
based on power counting should be valid. Hence ind = 2 − ε we find

−λ2
ABnB

32πλAA(2λAAnAt)λAB/2λAA

(
δ + 1

2
(δ2 − 1)

[
ln

(
1 − δ

1 + δ

)
−

∫ (1−δ)/(1+δ)

−1
dv

(1 + v)2

v2
ln(1 + v)

]
+ O(ε)

)
t ε/2 ln(2λAAnAt). (B6)

Further subleading corrections (in time), which we have not calculated, will lack the
logarithm factor, and so will contribute to theamplitudefor the minority species density.
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